
Co-Design of multi-agent heterogeneous robotic
systems for search tasks

Maximilian Stralz∗, Meshal Alharbi∗, Yujun Huang∗ and Gioele Zardini∗
∗Laboratory for Information and Decision Systems, Massachusetts Institute of Technology

Abstract—In this work, we present a framework which allows
to reason about multi-agent heterogeneous robotic systems in
search tasks. Leveraging a monotone theory of Co-Design, our
framework jointly designs hardware and software components
of multi-agent systems. Thereby, making the fleet itself an
optimization objective, rather than optimizing procedures for
already existing fleets. A case study on coverage tasks showcases
the power of the framework in extracting optimal solutions and
reasoning about the trade-offs in design decisions such as cost,
energy consumption and coverage time.

I. INTRODUCTION

Multi-agent robotic systems have gained increasing promi-
nence over the past decades, enabled by the maturity of
single-robot platforms and their effectiveness in complex tasks
[1]. Applications span warehouse logistics [2, 3], domestic
service robots [4], and safety-critical domains such as gas-leak
detection [5] and de-mining [4]. A central challenge is area
coverage, i.e., coordinating sensor-equipped fleets to monitor
or survey environments, which is vital in search and rescue
(SAR), forest fire monitoring [6], industrial inspection [7], and
disaster response [8]. Research in this field largely focuses on
coverage path planning (CPP) while typically assuming fixed,
often homogeneous, fleets [1, 4].
Contributions – We introduce a framework for formally mod-
eling multi-agent robotic systems in search tasks, explicitly
accounting for both homogeneous and heterogeneous fleets.
Through a case study, we show that the proposed framework
can integrate, but is not limited to, CPP algorithms with
a monotone theory of Co-Design [9, 10], thereby enabling
the joint optimization of fleet composition, robot design, and
planner selection. This holistic perspective provides a princi-
pled way to explore trade-offs among energy, cost, and task
completion time, supporting well-informed design decisions.
Related work – In [11], Hu et al. propose a framework
for large-scale heterogeneous multi-robot coverage which de-
composes the search domain into sub-regions, employing a
evolution-guided generative adversarial network to efficiently
solve the multi-robot task allocation (MRTA) problem by
producing Pareto optimal team allocations, hereafter referred
to as the MRTA planner. Path planning within each sub-
region is then performed in a decentralized manner, where
each team optimizes its trajectories by minimizing an ergodic
metric, ensuring spatially uniform coverage. Kapoutsis et al.
addressed homogeneous multi-robot coverage by introducing
the Divide Areas Algorithm for Optimal Multi-Robot Cover-
age Path Planning (DARP), which partitions the environment
into balanced, connected regions based on the fleets’ initial
positions. The planner then applies the spanning tree coverage
(STC) algorithm within each region to generate optimal, non-
backtracking paths [12]. In [13] Kazemdehbashi proposed

Fig. 1. Co-design diagram for heterogeneous multi-robot coverage, modeling
fleet composition, robot design, and planner choice. Green wires denote
functionalities (map, i.e. the search space, and coverage percentage), while
red wires denote resources (cost, energy, and time). The objective is to
derive Pareto optimal fleet designs, satisfying coverage requirements while
minimizing resource usage.

the adaptive grid-based decomposition (AGD) algorithm for
heterogeneous Unmanned Aerial Vehicle (UAV) fleets in mar-
itime SAR, where grid cell sizes are adapted to the UAVs’
sensing footprints, and coupled it with a mixed-integer pro-
gramming (MIP) model to generate coverage paths. In [9, 10],
Zardini and Censi introduce Co-Design, a framework that
formalizes each subsystem as a design problem which requires
resources and provides functionalities. These systems can be
interconnected to form larger problems, allowing multiple
subsystems to be jointly optimized, yielding Pareto optimal
trade-offs across complex systems. Co-Design has proven
effective in domains such as in Formula 1, balancing physical
configuration and race tactics [14], or in the design of au-
tonomous vehicles (AVs), where task-driven Co-Design jointly
optimizes hardware, perception, planning, and computation
under resource and performance constraints [15].

II. CO-DESIGN FRAMEWORK

While this work focuses on heterogeneous multi-robot fleets
for coverage tasks, the underlying modeling framework is gen-
eral and applicable to a broader class of multi-agent systems
and domain tasks. Fig. 1 illustrates the Co-Design diagram
of our framework. In this representation, green wires denote
functionalities and red wires denote resources that each block
respectively provides or requires. The diagram, together with
Co-Design’s optimization algorithm [10], determines optimal
fleet configurations, including robot types, design parameters,
and planner choice, that achieve a required coverage level
while minimizing cost, energy, and time. Accordingly, the
functionalities are map and coverage_percentage, and the re-
sources are total_cost, total_energy, and timebudget. Querying
the diagram with a FixFunMinRes query [10] (e.g., requiring a
coverage percentage of at least 75% on a given search space)
yields the complete set of Pareto optimal design solutions



together with their associated trade-offs. The following sub-
sections introduce the constituent blocks, i.e., the individual
design problems, that compose our framework.
Robot modeling – A fleet is defined as a combination of robot
types, each specified by the number of units per type. While
all types share a common interface, their capabilities differ:
they provide dynamic properties, battery capacity, and sensing
capabilities, and require cost and power. Unlike approaches
that assume fixed robot designs, we explicitly optimize the
internal design of each type. A robot is modeled as three
interconnected modules - battery, actuation, and sensing -
each contributing design variables that the optimizer can
tune to explore trade-offs. The actuation module imposes
a payload limit, which in turn creates a feedback loop as
the total weight depends on the combined weight of all
modules. This ensures that any chosen configuration is dy-
namically feasible. Similarly, the total cost and idle power
consumption are obtained by summing contributions across
modules. The instantaneous power consumption is modeled
as P (t) = Pidle + cvelv(t)

2 + cacc|a(t)|, where v(t) and
a(t) denote velocity and acceleration and cvel and cacc are
constants of the actuation module. This formulation defines
the inner optimization problem: For each robot type, determine
the set of feasible and optimal design choices as well as their
associated trade-offs, given the task requirements.
Planner modeling – The planner design problem requires
the fleet configuration (number of robots per type and con-
figuration), the energy required by each type to follow the
assigned plan, the execution time, and a global time budget for
task completion. In return, the planner provides the achieved
coverage percentage of the search space, defined as the union
of all areas swept by the robots’ sensing footprints. Connecting
the planner with the robot design problems forms the outer
optimization loop. The planner depends on robot properties
and imposes energy and execution-time requirements, ensuring
that each robot can feasibly complete its assigned trajectory.
This introduces a second feedback loop: The total energy
required by a robot is given by the movement energy plus
idle power integrated over execution time, ensuring that the
chosen battery capacity is sufficient to finish the task. Finally,
the total cost and total energy for completing the mission are
obtained by summing the contributions of all robots, yielding
the global resource measures.

III. EXPERIMENTAL RESULTS

Experimental setup – We evaluate our framework in a
rectangular search space of 400m x 800m, considering three
robot types (big drone, medium drone, and ground robot), with
up to five units of each type available for fleet composition.
Design variations are restricted to the actuation and battery
modules, while sensing is fixed to one option per type. Battery
configurations are adopted from [10], and the set of available
actuation/sensing modules is summarized in Table I.

The planner block is populated with options by running
simulations across all robot and fleet configurations using the
AGD planner (with an adaptation of the MIP approach with a
Christofides traveling salesman problem (TSP) approximation
[16]), the MRTA planner, and the DARP planner introduced
in Section I. To ensure physical feasibility, a motion planner is
applied on top of each coverage plan, enforcing the dynamic

Type Actuation module Sensing module
(v, cvel, cacc; cost, Pidle) (radius, cost, Pidle)

Big drone 20, 10, 20; 4000, 250
23, 14, 22; 4200, 280

50, 200, 2

Medium drone 10, 4, 7; 500, 22
14, 5, 9; 520, 24

12, 100, 1

Ground robot 5, 1, 3; 4000, 250
7, 2, 5; 4000, 250

30, 100, 15

TABLE I
AVAILABLE MODULES IN THE EXPERIMENTS. v : m/s,

cvel : Ws2/m2 , cacc : Ws2/m, cost : USD, Pidle : W , radius : m.

DARP planner
5 x big drone (v: 23 m/s)

DARP planner
1 x medium drone (v: 10 m/s)

MRTA planner
2 x medium drone (v: 10 m/s)

DARP planner
2 x medium drone (v: 10 m/s)

MRTA planner
3 x medium drone (v: 10 m/s)

DARP planner
5 x ground robot (v: 7 m/s)

DARP planner
5 x big drone (v: 20 m/s)
1 x medium drone (v: 10 m/s)
4 x ground robot (v: 5 m/s)

DARP planner
5 x ground robot (v: 7 m/s)

AGD planner
1 x big drone (v: 23 m/s)
5 x medium drone (v: 14 m/s)

①

②

③

Fig. 2. Pareto fronts resulting from querying our framework to cover a
rectangular search space of size 400m x 800m with coverage of 50% (dark
red), 75% (red) and 95% (yellow), respectively.

constraints of the robots and verifying that the resulting
trajectories are executable in practice.
Results — With the models and design choices fully instan-
tiated, we queried the framework to obtain Pareto optimal
solutions for coverage requirements of 50%, 75%, and 95%.
The resulting Pareto fronts, shown in Fig. 2, highlight the
trade-offs among the requirements. As expected, allocating five
large drones achieves rapid coverage but incurs very high cost
( 2 ), whereas relying on a single drone significantly reduces
cost but leads to longer completion times. At 1 , the AGD
planner yields the optimal solution, consistent with its design
for heterogeneous fleets, while at 2 DARP is selected due to
the homogeneous fleet composition. A further notable point
is 3 , where the MRTA planner along with two medium
drones in their less powerful variant are chosen, illustrating its
energy-awareness through slower prescribed speeds. Overall,
the results demonstrate how the framework enables systematic
exploration of trade-offs: Determining when powerful robots
are needed, when cheaper designs suffice, and where similar
performance can be achieved at far lower cost.

IV. DISCUSSION AND CONCLUSION

In this work, we present a Co-Design framework for an-
alyzing heterogeneous multi-agent robotic systems in search
tasks. Our framework adopts a holistic perspective by jointly
considering planner selection, fleet composition, and robot
design. Thus, our approach provides a structured exploration
of the trade-offs associated with each design decision. The re-
sults demonstrate the framework’s effectiveness in supporting
informed reasoning about system-level design choices. Future
work aims to incorporate more realistic sensing modules,
explicitly modeling uncertainty, and relaxing restrictions on
the search space geometry. Moreover, the framework can be
further exploited by expanding the query space to include more
diverse scenarios, robot types, and module configurations.
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