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Abstract— Rapid urbanization has increased demand for
customized urban mobility, making on-demand services and
robo-taxis central to future transportation. The efficiency of these
systems hinges on real-time fleet coordination algorithms. This
work accelerates the state-of-the-art high-capacity ridepooling
framework by identifying its computational bottlenecks and
introducing two complementary strategies: (i) a data-driven
feasibility predictor that filters low-potential trips, and (ii)
a graph-partitioning scheme that enables parallelizable trip
generation. Using real-world Manhattan demand data, we show
that the acceleration algorithms reduce the optimality gap by
up to 27% under real-time constraints and cut empty travel
time by up to 5%. These improvements translate into tangible
economic and environmental benefits, advancing the scalability
of high-capacity robo-taxi operations in dense urban settings.

Index Terms— Robo-Taxi, Ridepooling, Fleet coordination

I. INTRODUCTION

By 2050, 68% of the global population is projected to
live in urban areas [1]. This rapid urbanization is driving
demand for flexible, customized mobility solutions, while
worsening congestion and greenhouse gas emissions. On-
demand mobility services offer a promising alternative to
private vehicle ownership, combining flexibility with the
potential to easy pressure on infrastructure. Their success,
however, depends on effective large-scale vehicle coordination:
without it, the inherent spatial and temporal imbalance of travel
demand leads to excessive empty trips, eroding efficiency and
sustainability gains [2]. Autonomous Mobility-on-Demand
(AMoD) systems, also referred to as robo-taxi services,
address this challenge via centralized fleet control enabled
by algorithmic coordination [3]. At the core lies the vehicle-
to-request(s) assignment problem. Yet, most existing work
has focused on single-passenger assignments, which simplify
the optimization but increase inefficiencies such as empty
repositioning. Moreover, single-passenger services often com-
pete with mass transit, undermining sustainability objectives
and worsening congestion in the long term [4]. Ridepooling,
the practice of matching and merging multiple passenger
trips, offers a compelling alternative. By enabling shared
rides, AMoD fleets can reduce fleet size, cut empty mileage,
and mitigate congestion and emissions. Yet, despite such
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benefits, high-capacity ridepooling remains underexplored,
primarily due to its combinatorial complexity. Even single-
passenger assignments are NP-hard, and allowing shared rides
adds further structure that makes real-time fleet control more
challenging. The efficiency of ridepooling in AMoD systems
therefore depends critically on the scalability and real-time
performance of assignment algorithms. The state-of-the-art
algorithm of [5] addresses this complexity by leveraging
shareability networks, retaining optimality while improving
tractability. However, despite its practical success, it still
struggles to deliver high-quality assignments under strict
real-time constraints. Improving its computational efficiency
is therefore essential, but its bottlenecks remain poorly
understood and strategies for improvement largely unexplored.

Statement of contribution: This letter makes four key
contributions. (1) We formally reformulate the high-capacity
ridepooling algorithm of [5], clarifying its structure and
systematically identifying its computational bottlenecks. (2)
Building on this analysis, we propose two accelerations: a
data-driven feasibility predictor that filters low-potential trips
before optimization, and a shareability graph partitioning
scheme that enables parallelization and reduces problem size.
(3) We validate these strategies using large-scale, real-world
data from Manhattan, NYC, demonstrating substantial real-
time gains, including reductions in optimality gap up to 27%
and empty travel time of up to 5%. (4) We distill practical
insights on when to deploy each strategy, offering actionable
guidance for scalable, high-capacity ridepooling.

The remainder of the paper reviews related work (Sec-
tion II), formulates the baseline (Section III), introduces our
accelerations (Section 1V), evaluates them (Section V), and
concludes with a discussion of future directions (Section VI).

II. RELATED WORK

The vehicle-passenger assignment problem has received sig-
nificant attention with the rise of mobility-on-demand services.
Early work focused on the single-passenger setting, where a
vehicle serves one passenger at a time, as in traditional taxis.
The problem has been extensively studied via optimization-
based model predictive control [6], [7], learning [8], [9], and
hybrid optimization-learning frameworks [10]-[13], offering
different trade-offs between computational efficiency and
solution quality. Studies of Mobility-on-Demand (MoD)
systems have shown that such services can increase congestion
and induce longer empty travel miles due to cruising [14],
[15]. This motivated the study of ridepooling, where rides
are shared to improve utilization. Most work has focused on
low-capacity ridepooling, typically two-passenger trips [3],
[71, [16]-[18], where formulations are only marginally more
complex than single-passenger models [3], [19]. While such



restrictions simplify optimization, they limit the efficiency
gains achievable through higher degrees of sharing [5].
High-capacity ridepooling can deliver larger efficiency and
sustainability benefits but introduces substantial combinatorial
complexity. Even for small fleet sizes, real-time optimization
remains challenging. Existing approaches address this trade-
off either by integrating learning-based components to accel-
erate optimization while preserving feasibility [20], [21], or
by using heuristics that simplify sharing scenarios at the cost
of generality [22], [23]. The leading high-capacity approach
is [5], which leverages shareability networks [24] to prune the
search space while retaining optimality. This method has been
widely adopted in practice [25] and extended to non-myopic
coordination [20], [26], simplified single-assignment [23],
and multi-objective formulations [27]. However, despite its
success, it remains difficult to deploy at scale under strict
real-time constraints, and little work has targeted its efficiency.
In the remainder of the paper, we refer to [5] as the
“baseline”. While our analysis centers on ridepooling, the
proposed ideas apply broadly to graph-based resource alloca-
tion problems that require solving many small optimization
instances, including, e.g., robotics [28], and smart grids [29].

II1. PROBLEM FORMULATION AND BASELINE

We formulate the dynamic high-capacity ridepooling prob-
lem, and make its structural elements explicit, enabling a
systematic analysis of computational bottlenecks and the
development of targeted acceleration strategies.

a) Network, fleet, and requests: We represent the
on-demand mobility network as a directed graph G =
(V,&,t,0,d), where V is the set of nodes and € CV x V is
the set of directed edges. The maps o : £ - Vandd: & =V
assign an edge to its source and sink nodes, respectively. This
graph represents a driving network where only one edge
e € € exists from o(e) to d(e). The map ¢t : € x &€ = Ry
maps each edge e to a corresponding travel time t(e). Let

tmin : VXV — R>q denote a function that returns the shortest
travel time between a pair of nodes on G.! We assume that
G is strongly connected.

Let the fleet be given by N = {n;}¥,, and a capacity
map ¢ : N — N assign each vehicle to its capacity. Let
R denote the set of requests, where each » € R is a
tuple (¢, 0r,dy, 80,15, ), where ¢, € R>( is the request
time, o,,d, € V are the pickup and dropoff locations with
To # T4, t1, € R>q is the maximum allowable pickup waiting
time, ], € R>q is the maximum allowable dropoff delay time,
and « is the number of passengers requesting this particular
ride. The corresponding pickup and dropoff time windows
are: wy = [t,,t, +t;,] and wy = [t; + tmin(ro,7a), tr +
tmin (0, 7a)+1t}]. Given any requests with the same attributes,
i.e., ry = (t, 0, d, tw,td, al) and ro = (t, o, d, tw,td, 012), one
can aggregate them into r = (t,0,d, ty,tq, a1 + as).

b) Discretization and state maps: Fleet N serves re-
quests R over a time horizon [tgar, tend], discretized into T
windows t1,...,tp of equal length t5, > 0, such that teng =
tsart + 1 - tix. Each discrete time index t; corresponds to the

IThis is equivalent to solving a single vehicle routing problem on G.

time interval [tgear +ti—1 i, tstare + i - thix ). We denote the dis-
crete time window by ¢ and continuous time by £ € [tgart, Lend]-
We define the following maps to track requests and fleet status
over time. The active request aggregator wu: {ti,...,tr} —
P(R), t; = {r € R| tstart + ti - tax < t, +t7, }, returns the
requests that are waiting for service at time window t;. Further,
the vehicle state maps s: N X [tstart, tend] — V X R>q, which
maps each vehicle to its location at a given time, indicated
by the node to which it is traveling and the time remaining
to reach that node, and b: N X [tsart, tend] — P(R), which
maps each vehicle to requests onboard at any time.

c) Trips and feasibility: To formally present the assign-
ment problem, we first introduce the notion of feasible trip.

Definition 1 (Trip). A trip is a tuple 7 = (n,[,R7),
where n € N is a vehicle, [ is a finite, ordered sequence
of visited nodes (v1,...,vk) on G, and R™ C R is the set
of new request served in the trip. A trip may also drop off
existing onboard requests, while not exceeding the vehicle’s
capacity c¢(n) at any point along .

Definition 2 (Feasible trip). A trip 7 = (n,{,R7) is feasible
if: i) Each » € R" is picked up at o, within w;, and dropped
off at d, within w}, ii) Each onboard request r is dropped
off at d, within w},.

Let 7 : P(R) x N’ — Rxq return the minimal travel
time of any feasible trip serving given requests with a given
vehicle.

d) Dynamic assignment problem:

Problem 1 (Assignment Problem). At time window ¢, given
fleet N and active requests u(t), one represents assignment as
an optimization problem with the following decision variables:
o Assignment variables: z,, € {0,1}, Vr € R,n € N,
indicating if request 7 is assigned to vehicle n;
o Feasible trip variables: 7, = (n,l,R™), ¥n € N,
deciding a feasible trip for each vehicle n.
Constraints include >\ Zr, < 1,Vr € u(t), ensuring
that each request is served by at most one vehicle, and R™ =
{r|zn = 1},Vn € N, ensuring that the feasible trip for a
vehicle includes all its assigned requests. The objective is:

r£117r_1 M - Z Z Trn +Ztmm (R™,n)
/ reu(t) neN
The problem is solved for each of the 7' time windows on
a rolling horizon [30]. It is known to be NP-hard [31].

e) Baseline algorithm: Fig. 1 illustrates the baseline
algorithm for the assignment problem. In [5], a subsequent
rebalancing step uses a simple heuristic to allocate idle vehi-
cles to unserved requests. While effective, the computational
bottleneck lies in the assignment optimization itself. Since our
focus is on improving this stage, we omit rebalancing here,
though it can be incorporated as a final step once assignments
are determined. The baseline algorithm improves tractability
by reducing the search space (Fig. 1). We next introduce key
concepts underpinning its operation.

Definition 3 (Shareable requests). At time £, requests 7,p € R
are shareable if a feasible trip (n, [, {r,p}) exists for n such

that: i) b(n,t) = 0, ii) s(n,t) € {(r0,0), (po,0)}.
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Fig. 1: Assignment algorithm for each decision window.

Definition 4 (Shareability graph). The shareability graph is
an undirected graph S = (V*, €%, m) with node set V*, edge
set £%, and a map m: V* — N U R that maps each node
to a vehicle or request. An edge (z,y) € £° exists if one
of the following conditions holds: a) m(z), m(y) € R, and
the two requests m(x) and m(y) are shareable; b) m(x) €
N,m(y) € R, and a feasible trip exists for m(x) serving
m(y). These conditions provide a constructive way to build
a shareability graph given sets of vehicles and requests.

Definition 5 (Clique). A clique on a shareability graph S is
a fully connected subgraph &’ = (Vsl,é'sl,m) such that: a)

S eS8, b){xeV imx)eN}=1,andc) |{yeV:
m(y) € R}| > 1. Conditions b) and c) indicate that a clique
comprises one vehicle node and at least one request node.

At each time window ¢, the baseline algorithm solves the
assignment problem with the following procedure:
(1) Get vehicle set A/ and request set u(t). Construct a
shareability graph S based on them.
(2) Enumerate all cliques on S and keep track of the ones that
give feasible trips. Denote feasible trips as T = {7y, ..., 7p}.
(3) Formulate and solve a global assignment problem as
a Integer Linear Program (ILP) based on 7. Take a fea-
sible trip 7, = (np,l,, R?). Define indicator functions
1"(n',7,) = 1if n’ = np, and 17(i,7,) = 1 if i € RP.
Decision variable z; € {0,1} indicates whether passenger
i is assigned to a feasible trip, and y, € {0,1} whether a
feasible trip 7, is assigned to its corresponding vehicle n,,.
Following Problem 1, the constraints of the ILP are:

>y 1(nim) <1 W EN, (1)
TET
>y 17 <a; i€R. 2)
TET

Eq. (1) says that one vehicle can serve at most one feasible
trip, and Eq. (2) says that a passenger can be served by at
most one vehicle. The objective is as in Problem 1.

IV. METHODOLOGY

We first leverage the formulation in Section III to reveal
the computational bottlenecks of the baseline algorithm. We
then introduce two targeted acceleration strategies, one data-
driven, one graph-structural, designed to improve real-time
performance without sacrificing assignment quality.

A. Baseline analysis and bottleneck identification

Although not explicitly mentioned in [5], the baseline
approach is analogous to the concept of column generation
and cutting plane algorithms in integer optimization [32].

a) Column generation analogy: The assignment op-
timization step in the baseline can be viewed as a set-
partitioning/packing formulation [33] whose set elements are
requests. Let 7 be the set of all feasible trips obtained from
clique enumeration. Define a binary incidence matrix A with
one row per vehicle n € N and one row per request r € R;
each column j € 7 corresponds to a feasible trip 7;.
Set a;; = 1 if row 4 is a vehicle n and 7; uses n or if row ¢
is a request r and r € R, and a;; = 0 otherwise. With
binary variables y; selecting feasible trips, the master problem
takes the form min ZjeT cy; st. Ay < b, y € {0, 1}‘7—‘,
where b; = 1 enforces constraints in Problem 1, and c;
aggregates the objectives. In classical column generation, one
solves a restricted master problem with a subset Tg C 7T,
derives dual prices, and then solves a pricing problem, here a
VRP with time windows instance with dual-weighted costs, to
find a trip 7 € T\ 7o improving columns. The process repeats
until no improving column exists. By contrast, the baseline
fully enumerates 7 via clique enumeration and feasibility
checks before solving the master ILP. This generates-all-then-
optimize approach creates the bottleneck: exhaustive upfront
column generation incurs high computation.

b) Cutting plane analogy: Enumerating all vehicles-
passenger combinations is intractable. The baseline mitigates
this with a shareability graph (Definition 4), which encodes
pairwise feasibility and filters infeasible combinations before
trip generation. This is analogous to cutting plane methods
in integer optimization, where valid inequalities iteratively
shrink feasible regions. Here, the absence of an edge serves
as an implicit cut, forbidding certain pairs from appearing in
the same trip and drastically reducing the search space.

c¢) Bottlenecks: The baseline pipeline has two stages.
First, the shareability graph is constructed in parallel over
active vehicles and requests: for each vehicle-request (n,r) or
request-request (71, 7o) pair, one solves a constant-size routing
problem. Since each edge cost is bounded and independent,
this step scales linearly with parallelization. Second, feasible
trip generation checks each clique S’ with [V*'| = 1 by
solving a small capacity-constraint Vehicle Routing Problem
(VRP) with time windows. While individual instances are
small, the number of cliques grows combinatorially with
graph density, O(2%) for average degree d. The baseline
enumerates cliques sequentially by size to reduce exploration,
but clique counts remain large and this step dominates runtime.
The solid arrows in Fig. 2 illustrate the process of the
latter: each edge added to the assignment graph requires
solving a VRP for the corresponding candidate trip. The
exponential growth of candidate cliques, combined with the
inherently sequential enumeration step, makes this stage the
computational bottleneck of the baseline.

We propose two accelerations: i) data-driven feasibility
screening to discard low-quality cliques before optimization,
and ii) graph partitioning to parallelize the feasibility checks.
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Fig. 2: Building assignment ILP from shareability graph. The
iteration ends after all cliques have been iterated over. Solid
arrows: baseline. Dashed arrows: the data-driven step.

B. Data-driven ILP construction

To accelerate the construction of the assignment ILP, we
introduce a data-driven feasibility prediction layer that pre-
cedes the evaluation of each VRP. The accelerated algorithm
is reported in Algorithm 1, and a schema in Figure 2.

a) Representation: Given a clique c containing exactly
one vehicle n and a set of requests R., we build a tour
graph Giour(¢) = Viour, Eour)» Where every node can be
mapped to types {PU(r), DO(r)},cr. (ie., pickup and
dropoff), and every vehicle to its location node VO(n). The
edges of this graph encode admissible precedence/transition
constraints, including i) VO(n) — PU(r) for all r € R,
(i.e., vehicle picking up request), ii) PU(r) — DO(r) (i.e.,
pickup must precede dropoff), and iii) DO(r) — PU(') (i.e.,
serving 7’ immediately after dropping off ) and PU(+') —
DO(r) (i.e., picking up 7’ while r is still onboard).

We will consider node features such as the type of node
(i.e., VO, PU, or DO), the rate of request o, and time-window
slack, and edge features such as shortest-path travel time and
time-window slack of arriving at the sink node. This graph
representation “flattens” the clique so that hard constraints
(i.e., precedence, time windows, capacity) become explicit
features on nodes and edges.

b) Predictor: A neural predictor fy(c) € [0,1] esti-
mates Pr|c is feasible under the VRP | Giour(c)] (i.e., the
probability of the clique being feasible given a tour graph).
We leverage a Structure2Vect-style [34] message passing
on Giour(c), where the node embedding update p4t! is:

ReLU | 6yay + 02 > pl +65 > ReLU(aw(v, u))

u€ne(v) u€Ene(v)

where x,, is the original feature of node v, ne(v) denotes the
neighbors of node v, and 6; 2 3 4 are weights parameterized
by neural networks. We then pool {uq(}L)} and pass through
a sigmoid to obtain fp(c). If the model is trained with class-
balanced data and subsequently calibrated (e.g., via Platt
scaling [35]), then fp(c) can be directly interpreted as a
calibrated probability of feasibility, making fg (c) interpretable
in probabilistic terms. One chooses a feasibility threshold 3
and only examines cliques with fy(c) > [. In practice,
one can also perform stochastic selection: for each clique
¢, draw 8 ~ Uniform(0,1) and proceed with exact VRP
feasibility checking only if 3 < fy(c). Under calibration,
this means that a clique with predicted feasibility o will

Algorithm 1 Data-Driven ILP Construction

Require: Shareability graph S; prediction model for trip feasibility

1: Trips < 0

2: fori=1,...,k do

3: Round <+ 0

4 // Union feasible trips of size :—1

5 C + GetPotentialFeasible(i, S)
6: for c € C do
7
8

p < fo(c)

: B ~ Uniform(0, 1)
9: if 5 < p then
10: feasible «— Routing(c)
11: if feasible then
12: Round + Round U {c}
13: end if
14: end if

15: end for

16: Trips < Trips U Round

17: end for

18: AssignmentILP <« BuildILP(Trips)

be checked with probability «. This method is reported
in Algorithm 1, merging clique flattening and feasibility
prediction. This process, along with the neural network, is
illustrated in Figure 3.

c) Properties: As we will show in the case studies,
while simple in principle, this filter can be very effective.
We make explicit what it guarantees, and what it does not.
Let C be the set of enumerated cliques, and F C C Athe set
of truly VRP-feasible cliques. Let F3 = {c € C | (fo(c) >
B) A (c is feasible)} be the feasible set that survives filtering.

Lemma 1 (Preservation of feasibility). The filtering process
is sound, i.e., filtering never introduces infeasible trips.

Proof: Every candidate that passes the predictor still
undergoes exact VRP checking. Thus, F3 C F. O

Lemma 2 (Preservation of optimality). Let /* C F denote
the set of trips used by an optimal solution to the baseline ILP
(at most |A| columns). If the predictor has no false negatives
on F* at threshold § (i.e., F* C {c: fg(c) > (1}, high recall
condition), then the optimal solution of the filtered ILP equals
that of the baseline ILP.

Lemma 3 (Probabilistic preservation of the baseline optimum).
Let F be the set of feasible trips for the baseline ILP,
and F* C F the subset of trips used in a fixed baseline-
optimal solution, with |F*| < |[N]|. For each f € F, define
the event E; = “filter keeps f”,and let py = Pr(E;) € [0, 1].
Use x = Pr(optimum preserved). There are three cases.
a) Assuming no independence, we have * > max{0,1 —
Zfef*(l — ps)}s b) If prin = mingers py, then x >
max{0,1—|F*|(1—pmin)} > max{0, 1—|N|(1—*pmin)}; c)
If {Ey} independent, then x =[], 7. py > plrinl > plﬁﬂl.
Proof: The optimum is preserved if and only if all trips
in F* survive the filter, i.e., if ﬂfef* Ey occurs. By the
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Fig. 3: Feasibility prediction in the data-driven ILP. (1) A clique is extracted from the shareability network. (2) Passenger
nodes are expanded into pickup (PU) and dropoff (DO) nodes in a tour graph, where the vehicle connects only to the onboard
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complement rule and Boole’s inequality (union bound):

Pr|(Ef | =1-Pr(|JE}
! !

>1- Y Pr(Ef) =1- Y (1 py).

! !

Clipping to the interval [0, 1] yields the first inequality, py >
Pmin the second, and independence gives third. O

d) Practical aspects: First, if fg is calibrated, 3 trades
computation for optimality probability (Lemma 3). One can
target a high-recall operating point to protect optimal columns,
then adjust 8 to meet the real-time computational budget.
Second, to protect against correlated false negatives, one can
evaluate a small random fraction € of filtered-out cliques with
the exact VRP. Finally, the filter is order-agnostic for cliques
with the same size; one can greedily prioritize cliques by fp
(and/or size) and stop when the time budget is exhausted,
yielding a consistent anytime variant.

C. Shareability graph partition

We now address the clique-to-VRP bottleneck by reducing
the size and density of the search space and enabling paral-
lelization. We rely on partitioning the shareability graph into
smaller, disjoint subgraphs on which feasible trip generation
can be carried out independently and in parallel, before re-
aggregating the results into a unified global ILP (Figure 4).

a) Partitioned construction: Let S = (V*,£° m) be
the shareability graph (Definition 4). Let V™9 = {v €
Ve:m(v) € R}, and V' = {v € V*: m(v) € N}.
Let Ggrr be the request-request induced subgraph. We com-
pute a K{-way partition P = {P, ..., Pk}, Uszl B, =Vreq,
with P, N P; = () for ¢ # j. For each block P, we reattach
all vehicles in the parallel computing process. Specifically,
we build an induced subgraph Sy, by taking all request nodes
in partition P, and all vehicle nodes V¥*" (to preserve
every vehicle-request edge for that block). Formally, for k£ =
1,...,K: 8 = S[P, UV'h], where S[X] denotes the
induced subgraph of S on the node set X. This ensures that
each block has full access to the fleet when generating feasible
trips, even though the request-request part is restricted to Py.
Note that the reattachment step will not introduce duplicate
trips since each subgraph has disjoint sets of requests, and
it it can be fully parallelized among vehicles and subgraphs.
Feasible trip enumeration is then run in parallel on each Sy,

Algorithm 2 Partition-Based ILP

Require: Shareability graph S; set of active requests R
I: RR+ {z € S| m(z) e R} > exclude vehicle nodes
2: SPs « Partition(R)
3: Trips < 0
4: for all sp € SPs do
5 sp=spU{z eS| m(z) e N}
6: Round < 0
7
8

> executed in parallel

fori=1,...,k do
: C + GetPotentialFeasible(, sp)
9: for c € C do

10: feasible «— Routing(c)

11: if feasible then

12: Round <— Round U {c}
13: end if

14: end for

15: end for

16: Trips < Trips U Round

17: end for

18: AssignmentILP < BuildILP(Trips)
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Fig. 4: Partition-based algorithm.

and the union of all feasible trips feeds into a single global
ILP, with the same constraints as defined above.

b) Partition algorithms: Graph partitioning, a classical
NP-hard problem in parallel computing [36], is typically
addressed with heuristics tuned to graph structure and ob-
jectives. The request-request graph here is undirected and
homogeneous, with edges encoding binary shareability. We
evaluate two well-established complementary partitioners.
First, METIS [37]: A multilevel K-way method, producing
balanced partitions with few edge cuts. Balanced workloads
speed clique enumeration, but cuts may sever edges crucial
for optimal trips. Second, modularity [38]: A community-
detection approach maximizing within-group edge density.
It better preserves dense local connectivity and high-quality
trips, but can yield unbalanced partitions that slow the largest
subproblems. In short, METIS favors uniform parallelism,
while modularity favors feasibility. Both reduce complexity
and enable parallel execution preserving the ILP formulation.



¢) Properties: Let T the set of feasible trips (columns)
produced by the baseline on S, and Tyt = Ule Ti the
union of feasible trips extracted from {S;}& ;.

Lemma 4 (Preservation of feasible trips). Tpart € 7.

Proof: Each Sy is an induced subgraph of S; every
candidate clique that passes VRP feasibility in Sy, is a valid
feasible trip in S. The re-attachment of vehicles preserves all
vehicle-request edges; we never create edges not in S. [

Lemma 5 (Preservation of optimality). Let 7* C T be
a set of trips used by a baseline-optimal ILP solution. If
every 7 € T* satisfies R™ C Py, for some & (i.e., no optimal
trip crosses a partition), then the partitioned ILP achieves the
same optimal objective as the baseline.

Proof: T* C T,at by construction, so the baseline-
optimal solution is feasible in the restricted master. O

Lemma 6 (Preservation of optimality). Let F be the feasible-
trip set produced by the baseline on S and let B* C F denote
any set of trips used by a baseline-optimal ILP solution. If
for every 7 € B* there exists a block Py such that R™ C Py,
then the partitioned construction recovers all trips in B*, i.e.,
B* C Fpart, and the optimal objective value of the partitioned
ILP equals that of the baseline.

Proof: By assumption, every 7 € B* has all requests in
some Py. Since Sk = S[P, UV'"] includes all vehicles and
all request-request edges within Py, the clique(s) generating 7
appear in Sk and are recovered after VRP feasibility in
block k. Thus B* C Fpart. The global ILP built from Fpart
is therefore feasible for the baseline-optimal assignment and
attains the same objective, since it is a restriction of the
baseline master containing the optimal basis columns. [

Remark 1 (Speedup). Let C(S) be the number of candidate
cliques tested in the baseline and C'(Sy) those in block k. If
one VRP feasibility call costs 7" and blocks run in parallel,
the expected wall-clock VRP time is Tpare ~ maxy C(Sk)T,
vs. Thas = C(S)T. Balanced partitions (e.g., METIS)
reduce maxy, C'(Sy). High-modularity reduces ), C(Si) by
pruning sparse cross-block cliques.

d) Practical aspects: First, “halo” blocks can be intro-
duced by expanding each P, with nearby requests, e.g., P, =
P, U {r € Vra: distancegp(r, Py) < h}. With h = 1, any
trip contained within a block plus its immediate neighbors
is recoverable, and cross-block trips can be reconstructed by
merging feasible trips with shared requests across partitions,
capturing more high-value cliques at modest cost. Second,
priority scheduling can allocate denser of higher-demand
blocks to earlier or stronger processing cores, and may be
combined with the data-driven filter by ranking cliques on
predicted feasibility within each block. Finally, adaptive
repartitioning in dense regimes, triggered every few decision
windows based on current graph statistics (e.g., degree
distribution), could maintain partition quality over time.

TABLE I: Optimality gap (%) across methods at a 60s
aggregation interval. Bold represents decreased gaps.

Timeout [s] Baseline METIS Modularity Data-driven
15 46.0 24.8(-21.2) 27.2(-18.8) 46.8(+0.8)
30 46.0 24.0(-22.0) 26.8(-19.2) 39.7(-6.3)
45 45.6 23.2(-21.8) 25.6(-20.0) 35.5(-10.1)
60 44.0 16.8(-27.2) 24.8(-19.2) 29.6(-14.4)

V. NUMERICAL CASE STUDY

We evaluate our accelerations against the baseline using the
NYC TLC dataset [39], which captures real-world on-demand
mobility. We focus on the morning peak (8-9 AM, May 15,
2024) with ~13,000 trips over a network of ~4,000 nodes
and 10,000 edges from OpenStreetMap [40]. The decision
window is one minute, with A/ = 10° in Problem 1 to
prioritize passenger assignment over travel time. Vehicles
have a capacity of 10 to reflect high-capacity service. We first
show the scalability limits of the baseline and the reduction
in optimality gap achieved by our accelerations, then compare
service quality. All cases ran on a cluster with 2x Intel Xeon
E5-2670 v2 CPUs (20 cores, 40 threads) and 128 GB RAM.

A. Scalability issue

To showcase the complexity of ridepooling assignments,
we study how solution quality scales with computation time.
Demand is aggregated over 15s, 30s, 45s, and 60s intervals
from 8 AM, yielding problems of increasing size. Using 100
vehicles, enough to serve over 95% of passengers in the 1-
minute case, we run the baseline once at each scale. We then
(i) solve to optimality for all intervals to compare runtimes,
and (ii) for the 60s case, run baseline and accelerations under
fixed time budgets to compare optimality gaps.

For the first set of experiments, solving to optimality
required roughly 20, 80, 280, and 2000s for the 15s, 30s, 45s,
and 60s aggregation windows, respectively, showing a sharp
growth in complexity with scale. Thus, real-time applications
cannot rely on optimal solutions within each decision window,
and fixed time budgets are typically imposed. For the 60s
window, results under fixed time budgets are reported in
Table I. Because the objective (Problem 1) heavily weights
passenger assignments via a large M, the reported gap reflects
only the difference in assigned passengers between the optimal
solution and the best solution found under timeout. Given the
large optimality gap of the baseline under timeouts, improving
efficiency is essential. The proposed accelerations reduce this
gap by up to 27% under real-time constraints. Note that
the 60 s aggregation window only includes requests made
between 8:00-8:01. In practice, rolling-horizon operation also
carries over unassigned requests. To better reflect real-world
conditions, we therefore evaluate baseline and accelerated
algorithms over a one-hour Manhattan simulation. For all
subsequent experiments, we apply a 30 s timeout per decision
window, leaving time for communication and dispatch, and
vary fleet sizes from 400 to 800 vehicles. With 400 vehicles,
the baseline serves about half of peak-hour demand; with 800,
over 95% is served. This range creates diverse demand-supply
balances to test the robustness of our methods.
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Fig. 5: Data-driven acceleration vs. baseline and various drop
rates, with baseline comparison in bold.

B. Data-driven ILP construction

The data-driven method selectively skips cliques, prioritiz-
ing larger and more impactful ones. We evaluate its service
performance against the baseline in terms of served passengers,
occupancy, and average Empty Travel Time (ETT). As a
heuristic counterpart, we also test the baseline with random
clique drops at various rates, enabling a direct comparison
between ML-based filtering and naive pruning. Fig. 5 reports
results across fleet sizes. Relative to the baseline, the data-
driven method serves a similar number of passengers, slightly
increases occupancy, and reduces ETT by up to 5%. This
improvement has tangible consequences. A 5% cut in empty
mileage for Manhattan’s ride-hailing market ( ~300M vehicle
miles annually) corresponds to 15M fewer miles driven. For
operators, this translates into millions of dollars saved in
fuel, maintenance, and vehicle hours, while simultaneously
increasing fleet availability for passengers. Environmentally, it
reduces annual CO, emissions by an estimated 4,000-8,000
tons [41], [42], valued at $1-1.5M in avoided climate damages.

Random drop rates consistently yield fewer served pas-
sengers and lower occupancy than the data-driven one, and
while ETT can occasionally be lower, performance is highly
sensitive to chosen rates. Since the optimal rate depends on
demand, supply, and network topology, it must be fine-tuned.
In contrast, the data-driven method generalizes across settings,
avoids parameter tuning, and outperforms the baseline.

C. Shareability graph partition

We evaluate partition-based acceleration using METIS [37],
which balances subgraph sizes while minimizing edge cuts,
and a modularity-based method [38], which favors dense
communities over balance. Results are shown in Figure 6.

METIS outperforms the baseline at low and high fleet
sizes but shows little or negative improvement at medium
sizes. At low supply, dense shareability graphs make baseline
clique exploration the bottleneck; METIS partitions the graph,
enabling broader exploration and better assignments. At high
supply, graphs are sparse, and partitions cut few edges, so
METIS retains most connectivity while still gaining from

METIS Modularity
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parallelization. At intermediate supply, however, METIS may
sever critical edges in pursuit of balance, reducing trip quality
and offsetting parallelization gains. Modularity-based partition
performs better at low supply but deteriorates as fleet size
increases. With larger fleets, graphs are sparse, and it tends
to preserve one large core with small peripheral clusters [43],
yielding subproblems close in size to the baseline while still
cutting edges, leading to worse solutions.

Overall, partitioning can accelerate the baseline, but effec-
tiveness depends strongly on the demand-supply regime.

D. Data-driven ILP with partition-based parallelization

We now examine the combined use of data-driven ILP and
partition-based parallelization, comparing it to the baseline
and to each method individually (Figure 7). As shown in
Figure 7, with 400-500 vehicles the combined approach further
reduces ETT compared to either method alone, indicating
their compatibility. These scenarios are especially challenging:
low fleet supply produces large, dense shareability graphs,
and unserved requests accumulate over time. Under such
conditions, the synergy between data-driven filtering and
parallelized exploration yields the largest benefits.

VI. CONCLUSION AND FUTURE WORK

We studied the dynamic assignment problem with ride-
pooling, analyzed the state-of-the-art algorithm of [5], and
proposed two accelerations to address real-time performance
bottlenecks. Experiments on NYC data show that both
methods reduce empty travel time under realistic time limits
and can be combined for further gains, with direct benefits



for congestion and sustainability. In practice, the choice of
acceleration depends on the complexity of the assignment
ILP. Partition-based strategies expand feasible trip exploration
and improve solution quality when complexity is manageable,
while data-driven filtering is preferable when complexity is
high, as it preserves problem size while pruning low-quality
trips. Combining both is effective when additional perfor-
mance is needed. This work highlights general strategies for
accelerating high-capacity ridepooling, rather than developing
specialized ML solvers [44], [45] or graph partition meth-
ods [36]. Future directions include integrating such advances
into our framework, evaluating accelerations across diverse
scenarios, and exploring co-design of fleet composition [46].
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